

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from
Section – A and Q. No. 5 from Section – B
which are compulsory and any three of
the remaining questions, selecting
at least one from each Section.

SECTION - A

- 1. Answer any three of the following:
- (a) A particle of mass m₁ and moving with velocity u₁ elastically scattered from another particle of mass m₂ at rest. The two particles move in opposite direction with same speed

(Turn over)

after co	llision.	Find th	e mass	of m_2	in terms
of m ₁ .		Heyd			20

- (b) Write a note on Lorentz transformations, length contraction, time dilation and proper time. $5\times4=20$
- (c) Using Fermat's principles in geometric optics, explain:
 - (i) Why setting Sun appears flattened?
 - (ii) Formation of mirage. 10+10 = 20
- (d) Light + Light does not always give more light.Explain.
- 2. (a) A rocket starts from rest with exhaust velocity of gases 'u' km/s. Calculate the velocity attained by the rocket when the mass of the rocket reduces to 1/50th of the initial mass due to burning of the fuel. The gravitational attraction may be neglected. (In 10 = 2.3, In 5 = 1.609)

- (b) What are holonomic and non-holonomic constraints? Give an example for each case.How does a gyroscope works? 10+10 = 20
- (c) Construct a Lagrangian, and hence, equation of motion of a simple pendulum placed in a uniform gravitational field.
- (a) Write down the equation of motion for damped, driven oscillator and discuss the motion ('x(t)') for various cases.
 - (b) Explain the terms group velocity and phase velocity. When these two are the same?
 What are transverse waves and longitudinal waves? Give an example in each case.
 What is the characteristic of electromagnetic wave?
 - (c) Explain the matrix method in paraxial optics.

20

(a) Explain the working of Michelson interferometer. How does one measure

AK - 58/4

(3)

(Turn over)

	endad seed to a	
6860	wavelength of incident light using	this
	instrument?	20
rious((b) What is lasing principle? Explain the wo	orking
n ni be	of Ruby Laser.	20
00 (0	c) Explain the following terms: 10+5+5	= 20
101 hc	(i) Cornu's spiral	
ed) sa	(ii) Zone-plates	
08.	(iii) Airy patterns in optics	
onase	SECTION - B	20
5. A	nswer any three of the following :	
(а	a) An infinite plane carries a uniform sur	face
эдэндэ	charge σ. Argue that electric fiel	d is
00 = 01	independent of how far away you are	rom
aol/go:l	the plane?	20
0.5 (b)) What are the phases of matter? Explain a ty	pical
nozion	PT phase diagram. What is latent heat?	20
(c)	What is the final temperature when 200	g of
	ice at -20°C is dropped into 350 g of w	ater
AK - 5	8/4 (4) Coi	ntd.

at 40° C contained in a calorimeter of 50-g equivalent? How many grams of ice melt?

Sp. heat of water 1.00 kcal/kg.°C, and that of ice 0.50 kcal/Kg.°C, and heat of fusion of ice 80 kcal/Kg.

- (d) Starting from four first order Maxwell equations,
 obtain the wave equation for electric field and
 magnetic field in vacuum.
- 6. (a) Classify magnetic materials. State the properties for each class. Give an example for each case.
 - (b) How does a transform work? An Ac Adaptor has a transformer that converts 120 VAc into 9.0 VAc. What turns ratio is required? Which coil has more turns, primary or secondary?

 (c) A point charge q is held at a distance d above an infinite grounded conducting plane. Using

AK - 58/4

(5)

(Turn over)

method	of	images,	find	the	potential	in	the
region above the plane.					12.45 312		20

- 7. (a) State four Maxwell equations and explain their physical significance.
 - (b) Why day time clear sky appears blue? Express Maxwell equations in covariant form. 10+10=20
- (c) Explain Planck radiation law. Argue that it contains Wien displacement law and Stefan-Boltzmann law. Does a black body at 2000K emit X-rays? Does it emit radio waves?
- 8. (a) Assume that speed of sound in a gas is same as the root mean squared speed of the molecules, and show how the speed of sound for an ideal gas depends on the temperature. 20
 - (b) State and explain laws of thermodynamics. What is Carnot cycle? Agas expands

20

adiabatically and reversibly. What is the change in entropy? 10+5+5 = 20

(c) Explain (i) Micro canonical, (ii) Canonical and (iii) Grand canonical ensembles. 20

