

Time: 3 hours

Full Marks: 300

The figures in the right-hand margin indicate marks.

Candidates should attempt Q. No. 1 from Section – A and Q. No. 5 from Section – B which are compulsory and any **three** of the remaining questions, selecting at least **one** from each Section.

SECTION - A

- (a) Let p be a prime and m, a positive integer such that p^m divides o(G). Then prove that there exists a subgroup H of G such that o(G) = p^m.
 - (b) Prove that if V is a finite dimensional vector space and {v₁, v₂,, v_n} is a linearly independent subset of V, then it can be extended to form a basis of V.

AK - 52/3

(Turn over)

- (c) If H and K are finite subgroups of group G of order o(H) and o(K) respectively, then prove that 0(HK) = o(H)o(K)/o(H ∩ K).
- (d) Find the equation of the sphere circumscribing the tetrahedron bounded by the planes y + z = 0, z + x = 0, x + y = 0 and x + y + z = 1 and find its radius and centre.

15

- 2. (a) Find all the homomorphisms from Z/4Z to Z/6Z.
 - (b) Let R be a commutative ring with unity. Let A be an ideal of R. Show that $\frac{R[x]}{A[x]} \cong \frac{R}{A}[x]$. Hence, prove or disprove that if A is prime ideal of R, then A[x] is prime ideal of R[x].
 - (c) Let V and W are two vectors spaces and let
 T: V → W be a linear transformation, then
 Rank T + Nullity T = dim V.

AK - 52/3

Contd.

- (d) Find the enveloping cylinder of the surface $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ and the equations of}$ whose generators are x = y = z.
- (a) Let R be a ring having more than one element such that a R = R for all 0 ≠ a ∈ R.
 Show that R is a division ring.
 - (b) Prove that all vectors in the vector space \mathbb{R}^3 with $v_2 v_1 + 4v_3 = 0$ is a subspace of \mathbb{R}^3 .

 Determine a basis and the dimension of the subspace.
 - (c) Diagonalize the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and find the modal matrix. Hence find A^4 .
 - (d) Check whether the matrix $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is

Hermitian or Skew-Hermitian or unitary. Find its eigenvalues and eigenvectors.

- 4. (a) Find the range, rank, kernel and nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z).
 - (b) Show that every subgroup of an abelian group is normal. Give an example.
 - (c) The line of intersection of a pair of perpendicular tangent planes to the

ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, passes through a fixed point $(0, 0, \alpha)$ Show that the line of intersection lies on the cone $x^2(b^2 + c^2 - \alpha^2) + y^2(c^2 + a^2 - \alpha^2) + (z - \alpha)^2 (a^2 + b^2) = 0$.

15

(d) Find the eigenvalues and eigenvectors of

the matrix
$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
.

AK - 52/3

(4)

Contd.

SECTION - B

5. (a) Let $f:[0,1] \to [0,1]$ be a contraction map. Then (i) f has a unique fixed point $\ell \in (0,1)$ and (ii) given $x_0 \in [0,1]$, there exists a sequence (x_n) defined by the iteration scheme $x_{n+1} = f(x_n)$; $n = 0, 1, 2, \ldots$ such that $x_n \to \ell$ and $|x_n \to \ell|$

$$\leq \frac{c^{n}|x_{1}-x_{0}|}{1-c}, n \geq 1.$$
 15

- (b) The arc of the cardioids $r = a(1 + \cos\theta)$ included between $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ is rotated about the line $\theta = \frac{\pi}{2}$. Show that the area of the surface thus generated is $48\sqrt{2\pi a^2}/5$.
 - (c) Find the equation of the tangent plane and the normal line to the surface yz zx + xy + 5
 = 0 at the point (1, -1, 2).

AK – 52/3 (5) (Turn over)

- (d) Prove that a monotonic increasing sequence (x_n) bounded above is convergent and $\lim x_n = \sup x_n \in R$. Also, prove that the sequence $x_n = (1 + \frac{1}{n})^n$ converges.
- 6. (a) Let $f:[0, 1] \to \mathbb{R}$ be defined by f(x) =

$$f(x) = \begin{cases} \frac{1}{n}, & \frac{1}{n+1} < x < \frac{1}{n}, & \text{where } n \in \mathbb{N}. \\ 0, & x = 0 \end{cases}$$

Show that f is integrable and

$$\int_{0}^{1} f(x) dx = \frac{\pi^{2}}{6} - 1$$

(b) If f(z) = u(x, y) + iv(x, y) is differentiable at z₀, show that the Cauchy-Riemann equation hold at z₀ = x₀ + iy₀. Again, show that the function f defined by f(z) = | Re z Im z|^{1/2} satisfies the Cauchy-Riemann equation at origin. Is it differentiable at origin? Justify. 15

- (c) Show that the radius of curvature of the curve given by $x^2y = a\left(x^2 + \frac{a^2}{\sqrt{5}}\right)$ is the least for the point x = a and its value there is $\frac{9a}{10}$. 15
- (d) Show that the improper integral $I = \int_{1}^{x} \frac{\sin t}{t^{p}} dt$ is convergent if p > 0 and test the convergence of the integral $\int_{1}^{x} \sin \frac{1}{x^{2}} dx.15$
- 7. (a) Evaluate $I = \oint_{c} \frac{z^2 + 4}{z^3 + 2z^2 + 2z} dz$ where cis|z| = 1.
 - (b) Show that the function $f(x, y) = \frac{e^{-|x-y|}}{x^2 2xy + y^2}$, when $(x, y) \neq (x, x)$ and f(0, 0) = 0 is continuous at (0, 0).
 - (c) Verify Stoke's theorem for F = [y², xy, -xz], where S is the hemisphere x² + y² + z² = a², z≥0.

- (d) Find the volume of the solid surrounded by the surface $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} + \left(\frac{z}{c}\right)^{2/3} = 1.$
- 8. (a) Prove that $\int_{0}^{\infty} \frac{x^{m-1}}{1+x^{n}} dx = \frac{\pi}{n \sin\left(\frac{m\pi}{n}\right)}$ for m,

 $n \in N$ with n > m > 0.

15

(b) Verify Green's theorem, find the area of the region in the first quadrant bounded by the

curves y = x, y =
$$\frac{1}{x}$$
, y = $\frac{x}{4}$.

- (c) Prove that the vector function F = [6xy + z³, 3x² z, 3xz² y] is irrotational. Find a scalar function f(x, y, z) such that F = ∇f.
- (d) Find all possible Laurent series of $f(z) = \frac{7z^2 + 9z 18}{z^3 9z}$ about its singular points. 15

